,这就是数学,而缺少公式计算,则需要推理,进行反向推导过程。那么先觉条件失去,我们的计算量也就会增加,而公式的存在就是为了证明公式的好用和正确性。当你所研究则是推导!因为那是你的研究,计算,而不是超近路,走捷近,因为你也在推导过程!而运算你所谓的结果。微积分兴盛于西方,以简便符号而产生的国度。牛顿和莱布尼茨「茨可为兹,翻译缘故」奠定了微积分符号,和运算规则。他们的运算思想是基于前人的总结智慧和困惑,而形成了突破自我得认知,产生新领域大快车道。
而微积分还有傅里叶,泰勒,伯努利,和洛必达。而牛顿是因为被苹果砸一下而发现万有引力定律,而洛必达法则则是买了伯努利方程。至于真假辨别是非,不知!而这些都是离我们年代久远了。然而莱布尼茨的学生是伯努利——欧拉——拉格朗日——柯西,他们是师承关系。就像古希腊哲学的希腊三贤的苏格拉底——柏拉图——亚里士多德。
在数学考研里常说二流子洛必达有钱钞能力能解决的问题,不多想。这就是欧洲贵族的魅力在于我喜欢而拥有。而泰勒则是我是所有函数都可以解决的存在,我就是函数的王。就像只要洛不死,就往死里洛,这也是洛必达法则的规律。
可见有好老师的重要性,而名师出高徒,高徒而聪慧,然绕不过洛必达走捷近专业户,贵族的气质魅力无限光芒照耀!
而笛卡尔坐标系,而之象限。加之莱布尼茨提出函数概念,故而形成数学关于未知数的答案解疑。从而关于xykab这五个数与函数的概念关系联系。
三角函数即正弦y=sx,即对角度数正边比斜边。而之余弦y=sx,正切y=tanx。(正弦s,余弦s,正切tan。余切t,正割sec,余割scs。)则反函数加之arc。则称之反函数。即y=arx。而之三角函数也称圆函数。而引入符号表示。(而之y=3x+1,而之演变3x=y-1进而演变y包含x的方程式x=y-1\/3,而之y=x-1\/3)其实数字符号本身没有意义,只是用来代替当程而让人明白。比如,y=x,而之推理y=kx,则这里k为1。如若未推理则可k为任何数。而我们为了简单而前提定义为这样。则y=kx。则当k取一则k是为y=x而使得我们清楚看见这个方程式简单表达。)
是而y=kx+1。而这里的1也可以用a或b表示。但是为了方便我们则为一。而这里x没有次方「平方」。故而简称一元一次函数。而之加次x2次方则为二次方。是故加之为加次方。此时我们将产生幂函数,和指函数,因为他们存在相同。也可称之幂指函数。y=x的a次方。则为幂函数。(指数函数y=a的x次方)(ln和e都为底数符号而为指数)。而对数函数为y=loga的x次方指数。则是指函数加一个log符号。)而根号函数则y等于根号下x。而之我们上初中函数y=3x+1,则高中函数为为f(x)=3x+1。此处概念不同。其实数理未变。我们回到原始y=x。那么将是f(x)=x。那么函数y=x=f(x)。即y=f(x)。那么f(x)=3x+1。那么f(3x+1)=3x+1。
即所谓的归源之外之内有归源,归源而之有归源。
当整个高中生涯最后听到f(x)我始终不知道什么意思,那是因为我们不明白的是推导过程,其实数学的问题就是简单的回归到本源探索建立起来。而解决问题。而好像高中老师恶狠狠的瞪了我一眼。林敏熙打了一个盹。数学老师讲的f(x)就在我捡起晨光签字笔的时候,而错过了听。我弯下腰捡笔的那一刻,老师的怒目而视仿佛定格在高中生涯的最后一天啊!就是因为那一天我多看了林敏熙一眼,弯下腰捡了只笔,搞得我整个高中生涯都没有明白f(x)是什么意思。
时间总是让时间遗忘一些事情,而又给我们一些新的知识。大学高数的微积分。
牛顿和莱布尼茨的微积分,而牛顿推导公式加速度则让我们知道微积分推演过程。一是:v=ds\/dt「微积分速度推理」则而之ds=vdt。再而之s|上100而下0。(注:即0∞100)=|0∞dt。因为原函数f(x)等于推导函数f(x)。故而f(x)|上b下a等于|上b下a之f(x)dx。故而100减0。则换成b减a。故牛顿——莱布尼茨公式则f(x)|上b下a等于f(b)减去f(a)。
林敏熙也没什么心情听了,进而推导原函数f(x)而之导函数,f(x)。而微积分在函数基本认知上而推导函数成微积分。
然后说着说着,林敏熙又听见老师讲微积分的时候又说了二十四个基本微积分。然后老师说到古希腊字母对数理化符号的影响,而又有古希腊后来被罗马帝国占领,而又罗马文字对中国拼音的影响和英文字母与汉语清新相同。(注古人有若同法,直音法,纽声法,同平仄声。还有反切法。古人读音,而不对声韵标注,故而未标声韵。因其书写不须标音。)
古希腊